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Abstract
The dynamic evolution at zero temperature of a uniform Ising ferromagnet on
a square lattice is followed by Monte Carlo computer simulations. The system
always eventually reaches a final, absorbing state, which sometimes coincides
with a ground state (all spins parallel), and sometimes does not (parallel stripes
of spins up and down). We initiate here the numerical study of ‘chaotic
time dependence’ (CTD) by seeing how much information about the final
state is predictable from the randomly generated quenched initial state. CTD
was originally proposed to explain how nonequilibrium spin glasses could
manifest an equilibrium pure state structure, but in simpler systems such as
homogeneous ferromagnets it is closely related to long-term predictability and
our results suggest that CTD might indeed occur in the infinite volume limit.

PACS numbers: 02.70.−c, 05.10.Ln, 64.60.Ak, 05.70.Jk

1. Introduction

We consider the Ising model on an L × L square lattice with periodic boundary conditions.
Each site carries a spin either up or down, i.e. Sij = ±1, i, j = 1, 2, . . . , L. A pair of
neighbouring sites has unit energy if the two spin orientations are antiparallel; parallel spins
have no energy. The total energy thus ranges from E = 0 to 2L2, with the lowest possible
energy E = 0 corresponding to either of the two ground states with all spins either up or
down.

A randomly chosen state of this system is stored into the computer memory, and the
following dynamic rule is applied to it. A site is chosen at random, and its spin is a candidate
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to be flipped. If the energy decreases as a result of this flip, then we perform it. Energy
increases are not accepted: the chosen spin keeps its current state. If the energy would be
unchanged, then the flip is performed with probability 1/2. This procedure is then repeated
for another randomly chosen site, and so on.

Physically, this problem corresponds to a sudden quenching from infinite to zero
temperature. It was previously studied by measuring the ordinary magnetization, for instance,
in [1–5]. Here we consider it from a completely different point of view: our interest is to
study the influence of the starting state on a configuration at a later time t.

For each starting state, we perform D independent runs, each corresponding to a different
realization of the dynamics (i.e., a different, and also randomly chosen, chronological order
of spins selected to be flipped along with a different coin toss for each zero-energy flip
encountered). Each step in the time t corresponds to L2 flip attempts, i.e. a whole-lattice
sweep, on average. The local quantity

〈Sij 〉 = 1

D

D∑

d=1

Sij (1)

is calculated at each site ij , for t = 0, 1, 2, . . . . Furthermore, for each t, the global averages

Q(t) = 1

L2

∑

ij

〈Sij 〉 (2)

and

R(t) = 1

L2

∑

ij

〈Sij 〉2 (3)

are determined, where the sums run over all L2 sites.
In some sense, our approach is the opposite of the process called ‘damage spreading’,

where two slightly different initial states are followed exactly by the same dynamic rule,
including the same sequence of spins to be flipped and any other internal or external
contingency. Here, we are interested in the effect on the final state of different contingencies
occurring during the time evolution, i.e., different chronological orders of the spins to be
flipped and different coin tosses for deciding zero-energy flips. Starting from the same initial
configuration, equations (1), (2) and (3) compare D parallel, independent evolutions of the
same initial state.

Figure 1 shows the time dependences of the global averages for S = 100 samples, and
D = 3000 different dynamics each. Each sample corresponds to a new starting configuration
which is randomly chosen within a fixed value for the magnetization at t = 0:

m = 1

L2

∑

ij

Sij for t = 0. (4)

In order to prepare the starting state, we choose exactly (1 + m)L2/2 sites with spins
up and the remainder (1 − m)L2/2 sites with spins down. Our program stores one spin
per bit along a 32-bit computer word, corresponding to 32 different starting states processed
at once. For that, we profit from the fast bitwise operations, using techniques described
in [6]. As a check, we performed also the same simulations starting from completely random
configurations, instead of classifying them according to the magnetization. The results (not
shown) are similar to those obtained from m = 0, but with much larger fluctuations.

One important feature exhibited in figure 1 is that any small nonzero starting magnetization
is enough to break the symmetry: for large enough times, the system saturates on a
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Figure 1. Time functions Q(t) and R(t), equations (2) and (3), averaged over 100 different initial
states. Each curve corresponds to a different starting magnetization m: exactly 0 (bottom curves
in both sides), 0.01, 0.02, 0.03, 0.04, 0.10, 0.15, 0.20, 0.25 and 0.30 (from bottom to top). At the
beginning, Q(t = 0) = m and R(t = 0) = 1 in all cases. The error bars lie mostly within the
symbols, except for some cases. Note that only for the symmetric case m = 0 one gets Q(t) = 0
within the error bars (left). On the other hand, R(t) does not vanish even for this same symmetric
case (right). Other lattice sizes, both smaller and larger than L = 14, follow the same behaviour.

nonvanishing value for Q(t), always larger than the starting magnetization itself. This is
true even for larger lattices (not shown), for which one can better approach the limit m → 0.

Based on the observation that any nonzero starting magnetization is enough to break the
up/down symmetry, we conclude that the most interesting case is the initially symmetric
situation, i.e. m = 0 exactly. Thus, hereafter we will treat only this case, fixing attention on
the behaviour of R(t).

As we discuss in detail later as part of the notion of ‘chaotic time dependence’ [7], a basic
issue we wish to explore concerns the whole set of D distinct dynamical histories starting from
the same initial state. In principle, this could be studied by considering Q(t), as t → ∞,
without any averaging over S samples (since such averaging would give a quantity essentially
the same as the average magnetization) by seeing whether Q(∞) was nonzero for a non-
negligible fraction of starting states. If somehow all these D distinct histories diverge from
each other, how much do they keep in common due to their common starting point? This is
the question we are interested in. For initial magnetizations m �= 0, the left part of figure 1
provides a clear answer. For m = 0, instead, we look at the quantity R(t → ∞) which we
can average over S samples and ask whether it stays nonzero as the system size increases.

The text is divided into two more sections: first the description of our simulations and the
presentation of the results, then our conclusions.

2. Description and results

A first important observation concerns the absorbing state, i.e. the final distribution of all spins
from which no more changes are possible. Before the system reaches this situation, we call it
alive, after, it is dead. These terms apply to the whole lattice, not to each spin: the system is
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Figure 2. Statistics of GS realizations, i.e. those for which the absorbing state is a ground state
(see first paragraph, section 2). From D (in this case 60) dynamics starting from the same initial
state, we record the fraction of GS realizations obtained. The whole procedure is repeated S (in
this case 320) times, from which the histogram is constructed.

dead when no energy decrease or tie can be achieved by flipping any of its spins. As noted
earlier, there are only two possible ground states each with energy E = 0, with all spins either
up or down. Both states are clearly absorbing. Our simulations found that in roughly 2/3 of the
realizations the system becomes eventually dead in one of these two ground states: we label
these realizations with the symbol GS. However, within the remainder 1/3 of the realizations,
the system becomes trapped into other absorbing states with E > 0. The common example
is a striped configuration, with alternating stripes of up and down spins, whose widths are
larger than one layer. Clearly, this situation does not allow any further change, and the system
becomes dead as soon as it is reached: we label these cases with the symbol ST. All of these
findings are in agreement with earlier studies [3, 5]. Figure 2 shows two typical countings of
GS versus ST situations. Note that the approximate balance 2/3 against 1/3 does not depend
on the lattice size: striped configurations always appear, independently of the lattice size.

We discard ST situations, keeping only GS in our statistics. Striped configurations
appear as a consequence of the finite lattice size. In an infinite lattice, domains of up or
down neighbouring spins grow forever; there is zero probability (with respect to either initial
configuration or dynamical realization) of the system evolving towards a ‘striped’, or domain
wall, state as t → ∞ [9]. This means that any finite region eventually consists of only a single
domain (equivalently, after some fixed finite time its spin configuration is GS). Therefore, if
our simulations are to provide insights into the infinite lattice situation, it is proper to consider
only GS realizations. All other possibilities are consequences of finite size and are thus
discarded.

There is also a ‘practical’ reason for discarding runs terminating in a striped configuration:
they are boundary condition dependent. Of course, when starting a run, one is not able to
predict whether it will evolve into a GS or ST configuration, since the outcome can a priori
depend on the dynamical realization. We therefore run each dynamical realization twice.
First, we simply note whether for that particular dynamics the system reaches a GS or a ST
configuration. By doing this we can perform separate statistics for GS and ST outcomes.
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Figure 3. The fraction of never flipped spins (persistence) decays with time as p ∝ t−θ . Curves
with averages over only GS or only ST realizations are shown. The critical exponent we obtained
from GS statistics is θ ≈ 0.24 (the same also for other values of L and D), in good agreement with
earlier studies [10]. Also, the final saturated fraction f scales with the lattice size as f ∝ L−β ,
with β ≈ 0.47 extracted from our data for L = 10, 14, 22, 30, 38 and 54.

As an example, we analyse a quantity defined by Derrida [10]: the fraction of ‘never flipped’
spins as a function of time. This quantity is called persistence, and was shown to display
critical behaviour, i.e.,

p ∝ t−θ , (5)

decaying as a power law whose critical exponent θ obeys some universality properties [10]. It
is shown in figure 3. Indeed, the plot obtained from only GS realizations saturates later than
the corresponding ST plot, for the same finite lattice size, allowing a better determination of
the critical behaviour, a practical advantage.

As a byproduct, we also find the further finite-size-scaling relation

f (L) ∝ L−β with β ≈ 0.47, (6)

for the asymptotic saturated persistence f , which does not depend on the number D of
dynamics.

Figure 4 shows another example, now for the quantity R (cf equation (3)). It saturates in a
much smaller value for GS than for ST. This is true also for other lattice sizes, both smaller and
larger than L = 22. Note also the smaller fluctuations (error bars) obtained for GS. Figure 5
shows the same behaviour, for a larger lattice, now in a logarithmic scale.

Contrary to persistence, the asymptotic value R(t → ∞) does depend on the number
D of dynamics. Figure 6 illustrates the distinct behaviours of R(t → ∞), for GS and ST
realizations, as the number D of dynamical runs increases. For GS the function R(t) is
considerably smaller for large enough times.

Let us denote by RGS
L the D → ∞, t → ∞ value of R(t), restricted to GS realizations (but

otherwise averaged over all initial states). This quantity provides a measure of the information
about the final state already contained in a typical, randomly chosen, initial state. It cannot
vanish for a fixed finite size L because there are some GS realizations that definitely determine
the final state, independent of dynamical realization. Figure 6 does not show significant size
dependence of R(t) at large t, and hence suggests the possibility that RGS

L may not tend to zero
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Figure 4. Quantity R as a function of time, averaged over GS (bottom) and ST (top) situations,
separately.
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Figure 5. The same as figure 4, for a larger lattice and using a logarithmic scale.

as L → ∞. This in turn suggests that the phenomenon of ‘chaotic time dependence’ (CTD) [7]
might be occurring.

CTD concerns the large-time predictability of an infinite system based on the randomly
generated initial state and not dependent on the realization of the dynamics. CTD means
that 〈S11〉 at time t, averaged over all the dynamics, in the limit L → ∞, does not tend to
zero as t → ∞ (and thus forever oscillates between positive and negative values) for typical
randomly generated initial states. We note that in principle, CTD could occur even without the
nonvanishing of RGS

L→∞ since CTD does not involve any restriction of initial states (to GS) or
any averaging over initial states (or equivalently over sites in the lattice). On the other hand,
it seems clear that CTD should occur if indeed RGS

L→∞ �= 0.
Figure 7 shows the number of still alive realizations as a function of time, again within

separated statistics for GS and ST. One observes that some GS realizations are already dead
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Figure 6. Large-time asymptotic values, R(t → ∞), as a function of the number D of dynamical
runs, for L = 38 (squares) and 54 (circles).
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Figure 7. Number of still alive realizations as a function of time. The inset indicates an exponential
asymptotic decay for GS, after a sudden drop at t0 ≈ 1000.

when the first death among ST occurs. Then, within a narrow time interval, all ST die. On the
other hand, after a sudden but not extinguishing drop around t0 ≈ 1000, GS realizations die
within a slower rate: some of them survive much more time. The inset shows this last regime
for GS, with the linear horizontal scale, indicating an exponential decay. The characteristic
time when the sudden drop occurs (t0 ≈ 1000 in figure 7) depends on the lattice size L, but
not on the number D of dynamics: the larger the lattice size, the later the system enters into
the final exponential decay for GS realizations (inset of figure 7). This regime corresponds
to a big sea of up spins with some shrinking islands of neighbouring down spins, or vice
versa. It begins at t0, when the spontaneous symmetry breaking finally occurs and one of the
two possible spin orientations up or down has a majority for the first time: from t0 on, this
majority fraction increases exponentially fast. An interesting observation is the coincidence
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Figure 8. Time of first death as function of the lattice size, equation (7).

of the beginning of this regime with the sudden death of all ST realizations, reinforcing once
more our interpretation of ST as mere finite size artefacts: the further exponential decay is
aborted for ST realizations, because the minority islands (narrowest stripes) are artificially
made stable by the boundary conditions.

The characteristic time t0(L) measures the average lifetime for this evolving system. In
order to identify its behaviour, in the thermodynamic limit L → ∞, we measured for each
L = 10, 14, 22, 30, 38 and 54 the time when the first death occurs among all GS realizations,
adopting S = 320 samples with D = 6000 dynamics each. The result is a power law

t0(L) ∝ Lα, (7)

with α ≈ 2, figure 8. A simple reasoning shows the compatibility of this behaviour with that
corresponding to persistence, as in figure 3. At t = 1 (one complete lattice sweep) the average
fraction of non-flipped spins is a constant (numerically 0.708; note also the abrupt drop from
R(0) = 1 to R(1) ≈ 0.25 in figure 1), while at the characteristic time t0 the final value f is
reached (Figure 3). Thus, from equation (5) we can express the corresponding exponent as

θ = ln(const) − ln(f )

ln(t0) − ln(1)
or t0 ∝ f −1/θ . (8)

Finally, from equation (6) we get

t0(L) ∝ Lβ/θ . (9)

By comparing equation (7) with (9), we get the scaling relation

α = β/θ, (10)

in agreement with our numerical values θ = 0.238 ± 0.002, β = 0.466 ± 0.002 and
α = 1.96 ± 0.06.

An interesting interpretation for the exponent α = 2 follows. One particular cluster of
neighbouring parallel spins grows like a diffusive random walk, thus with diameter proportional
to t1/2. This cluster eventually covers the entire lattice, i.e. L ∝ t

1/2
0 . Indeed, by following

the growth process of the largest cluster just before covering the entire lattice, one observes a
typical diffusive process.
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3. Conclusions

We have studied the dynamical evolution of 2D Ising ferromagnets to explore the extent to
which information contained in the randomly generated initial state determines large-time
behaviour. We did this by comparing different realizations of the dynamical evolution, all
starting from the same initial state, i.e., by monitoring the correlations between possible
alternative different histories, as functions of time.

Among other findings, we detected two different regimes during the time evolution towards
the ground state, by counting how many realizations have already reached there as time goes
by. We discovered the size dependence of the characteristic relaxation time, t0 ∝ Lβ/θ , where
θ is the Derrida exponent and β measures the size scaling of the saturated persistence f (cf
equation (6) and figure 3).

Our most intriguing finding is the suggestion from figure 6 that the predictability measure
RGS

L may not vanish in the limit L → ∞ so that even in the infinite volume limit there may be
predictability of information about the arbitrarily large time behaviour of the system contained
in a randomly generated initial state. This will be pursued in a future paper.
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